
Exact Geometric Computing Generic programming in CGAL Other languages

Design Goals and Programming Paradigms

Sylvain Pion

INRIA Sophia Antipolis, France

LIAMA 10th Anniversary, 2007

Exact Geometric Computing Generic programming in CGAL Other languages

Outline

1 Exact Geometric Computing

2 Generic programming in CGAL

3 Other languages

Exact Geometric Computing Generic programming in CGAL Other languages

Examples of Computational Geometry Algorithms

Convex hulls, triangulations, Voronoi diagrams

Emphasis on asymptotic complexity (Real-RAM model)

Algorithms manipulating large numbers of geometric objects

Exact Geometric Computing Generic programming in CGAL Other languages

CGAL: Software Architecture

General architecture: kernel, basic library, support library

Kernel

S
u
p
p
or

t

Basic Library

C
on

ve
x

H
u
lls

T
ri

an
gu

la
ti

on
s

V
or

on
oi

D
ia

gr
am

s

A
rr

an
ge

m
en

ts

S
p
at

ia
l
S
ea

rc
h
in

g

G
eo

m
et

ri
c

O
p
ti

m
iz

at
io

n

Exact Geometric Computing Generic programming in CGAL Other languages

Kernel of geometric primitives

Algorithms are logically split into:

a combinatorial part (constructs a graph)

a numerical part (makes use of coordinates)

The latter calls primitives gathered in the kernel:

Basic objects: points, segments, lines, circles...

Predicates: orientations, abscissa comparisons...

Constructions: intersection, distance computations...

positive
orientation

negative
orientation

p

r

q

x

C2

C1
p

x(p)

y(p)

O

y

Exact Geometric Computing Generic programming in CGAL Other languages

Kernel of geometric primitives

Algorithms are logically split into:

a combinatorial part (constructs a graph)

a numerical part (makes use of coordinates)

The latter calls primitives gathered in the kernel:

Basic objects: points, segments, lines, circles...

Predicates: orientations, abscissa comparisons...

Constructions: intersection, distance computations...

positive
orientation

negative
orientation

p

r

q

x

C2

C1
p

x(p)

y(p)

O

y

Exact Geometric Computing Generic programming in CGAL Other languages

Kernel of geometric primitives

Algorithms are logically split into:

a combinatorial part (constructs a graph)

a numerical part (makes use of coordinates)

The latter calls primitives gathered in the kernel:

Basic objects: points, segments, lines, circles...

Predicates: orientations, abscissa comparisons...

Constructions: intersection, distance computations...

positive
orientation

negative
orientation

p

r

q

x

C2

C1
p

x(p)

y(p)

O

y

Exact Geometric Computing Generic programming in CGAL Other languages

Example: Delaunay triangulation

Incremental algorithm in 2 steps: point location and update.

Point location: orientation(p, q, r) predicate, sign of:˛̨̨̨
˛̨ 1 px py

1 qx qy
1 rx ry

˛̨̨̨
˛̨ =

˛̨̨̨
qx − px qy − py
rx − px ry − py

˛̨̨̨

Exact Geometric Computing Generic programming in CGAL Other languages

Example: Delaunay triangulation

Incremental algorithm in 2 steps: point location and update.

Point location: orientation(p, q, r) predicate, sign of:˛̨̨̨
˛̨ 1 px py

1 qx qy
1 rx ry

˛̨̨̨
˛̨ =

˛̨̨̨
qx − px qy − py
rx − px ry − py

˛̨̨̨

Exact Geometric Computing Generic programming in CGAL Other languages

Delaunay triangulation

Incremental algorithm in 2 steps: point location and update.

Update: in_circle(p, q, r, s) predicate, sign of:˛̨̨̨
˛̨̨̨ 1 px py px2 + py2

1 qx qy qx2 + qy2

1 rx ry rx2 + ry2

1 sx sy sx2 + sy2

˛̨̨̨
˛̨̨̨

Exact Geometric Computing Generic programming in CGAL Other languages

Delaunay triangulation

Incremental algorithm in 2 steps: point location and update.

Update: in_circle(p, q, r, s) predicate, sign of:˛̨̨̨
˛̨̨̨ 1 px py px2 + py2

1 qx qy qx2 + qy2

1 rx ry rx2 + ry2

1 sx sy sx2 + sy2

˛̨̨̨
˛̨̨̨

Exact Geometric Computing Generic programming in CGAL Other languages

Voronoi diagram of points

Exact Geometric Computing Generic programming in CGAL Other languages

Voronoi diagram of line segments

Exact Geometric Computing Generic programming in CGAL Other languages

Voronoi diagram of circles

Exact Geometric Computing Generic programming in CGAL Other languages

Robustness problems

Algorithms rely on mathematical theorems, like:

p

q r

s

ccw(s, q, r)
ccw(p, s, r) => ccw(p, q, r)
ccw(p, q, s)

Exact Geometric Computing Generic programming in CGAL Other languages

Robustness

Example where floating-point geometry differs from real geometry:
orientation of almost collinear points.

q (24, 24)

p (0.5, 0.5)

r (0.5 + εx, 0.5 + εy)

x=y

[Kettner, Mehlhorn, Schirra, P., Yap, ESA’04]

Exact Geometric Computing Generic programming in CGAL Other languages

Potential consequences on algorithms

Slightly wrong result

Completely wrong result

The algorithm stops on a invalid assertion

The algorithm loops forever

Exact Geometric Computing Generic programming in CGAL Other languages

Potential consequences on algorithms

Slightly wrong result

Completely wrong result

The algorithm stops on a invalid assertion

The algorithm loops forever

Exact Geometric Computing Generic programming in CGAL Other languages

Robustness: solutions

Case-by-case treatment: painful, error prone, not mathematically nice

Use exact predicates (Exact Geometric Computing)

Remarks

Floating-point fails on [almost] degenerate cases.

These cases happen more of less often in practice.

Exact Geometric Computing Generic programming in CGAL Other languages

Robustness: solutions

Case-by-case treatment: painful, error prone, not mathematically nice

Use exact predicates (Exact Geometric Computing)

Remarks

Floating-point fails on [almost] degenerate cases.

These cases happen more of less often in practice.

Exact Geometric Computing Generic programming in CGAL Other languages

Robustness: solutions

Case-by-case treatment: painful, error prone, not mathematically nice

Use exact predicates (Exact Geometric Computing)

Remarks

Floating-point fails on [almost] degenerate cases.

These cases happen more of less often in practice.

Exact Geometric Computing Generic programming in CGAL Other languages

Arithmetic: Number types

Geometric primitives are parameterized by the arithmetic.

Multiple precision integers [GMP, MPFR, LEDA...]

Multiple precision rationals

Multiple precision floating-point

Interval arithmetic (with double or MP bounds)

Algebraic numbers:

Numerical evaluation with separation bounds [CORE, LEDA]

Polynomials, Sturm, resultants... [CGAL, SYNAPS]

Exact Geometric Computing Generic programming in CGAL Other languages

Arithmetic: Number types

Geometric primitives are parameterized by the arithmetic.

Multiple precision integers [GMP, MPFR, LEDA...]

Multiple precision rationals

Multiple precision floating-point

Interval arithmetic (with double or MP bounds)

Algebraic numbers:

Numerical evaluation with separation bounds [CORE, LEDA]

Polynomials, Sturm, resultants... [CGAL, SYNAPS]

Exact Geometric Computing Generic programming in CGAL Other languages

Arithmetic: Number types

Geometric primitives are parameterized by the arithmetic.

Multiple precision integers [GMP, MPFR, LEDA...]

Multiple precision rationals

Multiple precision floating-point

Interval arithmetic (with double or MP bounds)

Algebraic numbers:

Numerical evaluation with separation bounds [CORE, LEDA]

Polynomials, Sturm, resultants... [CGAL, SYNAPS]

Exact Geometric Computing Generic programming in CGAL Other languages

Arithmetic: Number types

Geometric primitives are parameterized by the arithmetic.

Multiple precision integers [GMP, MPFR, LEDA...]

Multiple precision rationals

Multiple precision floating-point

Interval arithmetic (with double or MP bounds)

Algebraic numbers:

Numerical evaluation with separation bounds [CORE, LEDA]

Polynomials, Sturm, resultants... [CGAL, SYNAPS]

Exact Geometric Computing Generic programming in CGAL Other languages

Filtered predicates

Speed up exact predicates using a filter:

floating-point evaluation with a certificate

multiple precision only when needed

Examples

interval arithmetic (dynamic filters),
[Burnikel, Funke, Seel – Brönnimann, Burnikel, P.’98]

or static code analysis (static filters) [Fortune’93... Melquiond, P.’05]

Programming aspects:

automatic generation of filtered predicates

cascading/pipelining various methods

Exact Geometric Computing Generic programming in CGAL Other languages

Filtered number types
DAG of the operations in memory, e.g.:

√
x +

√
y −

p
x + y + 2

√
xy

sqrt + *

yx

sqrt

sqrt

*

2

+

+

sqrt

−

Approximation and iterative precision refinement, on demand.

Exact Geometric Computing Generic programming in CGAL Other languages

Filtered predicates: benchmarks

Running time of a 3D Delaunay triangulation.

R5 E M B D
double 40.6 41.0 43.7 50.3 loops

MPF 3,063 2,777 3,195 3,472 214
Interval + MPF 137.2 133.6 144.6 165.1 15.8
semi static + Interval + MPF 51.8 61.0 59.1 93.1 8.9
almost static + semi static
+ Interval + MPF 44.4 55.0 52.0 87.2 8.0
Shewchuk’s predicates 57.9 57.5 62.8 71.7 7.2
CORE Expr 570 3520 1355 9600 173
LEDA real 682 640 742 850 125
Lazy_exact_nt<MPF> 705 631 726 820 67

An important criteria: failure rate of filters.
User interface in CGAL: choice of different kernels.

Exact Geometric Computing Generic programming in CGAL Other languages

Filtered geometric constructions

Additional difficulty: storage of geometric objects in memory
Bonus: regrouping computations, and less memory

P

Q

R

S

T

U

I

I

P Q R S

T U

Intersection

Construction

Segments

Points

Point

Exact Geometric Computing Generic programming in CGAL Other languages

Algorithms and traits classes

Generic programming: algorithms are decoupled from the data structures and the
numerics. Similarly to the C++ STL.

Algorithms are parameterized (templates) by geometric traits classes which provide:

types of the objets manipulated by the algorithm: Point_2, Tetrahedron_3...

predicates that the algorithm applies to objets: Orientation_2,
Side_of_oriented_sphere_3...

constructions : Construct_mid_point_2, Construct_circumcenter_3,
Compute_squared_length_2...

These last two are provided under the form of function objects.
Requirements of algorithms are described under the form of concepts for their template
parameters.

Exact Geometric Computing Generic programming in CGAL Other languages

Algorithms and traits classes

Generic programming: algorithms are decoupled from the data structures and the
numerics. Similarly to the C++ STL.

Algorithms are parameterized (templates) by geometric traits classes which provide:

types of the objets manipulated by the algorithm: Point_2, Tetrahedron_3...

predicates that the algorithm applies to objets: Orientation_2,
Side_of_oriented_sphere_3...

constructions : Construct_mid_point_2, Construct_circumcenter_3,
Compute_squared_length_2...

These last two are provided under the form of function objects.
Requirements of algorithms are described under the form of concepts for their template
parameters.

Exact Geometric Computing Generic programming in CGAL Other languages

Algorithms and traits classes

Generic programming: algorithms are decoupled from the data structures and the
numerics. Similarly to the C++ STL.

Algorithms are parameterized (templates) by geometric traits classes which provide:

types of the objets manipulated by the algorithm: Point_2, Tetrahedron_3...

predicates that the algorithm applies to objets: Orientation_2,
Side_of_oriented_sphere_3...

constructions : Construct_mid_point_2, Construct_circumcenter_3,
Compute_squared_length_2...

These last two are provided under the form of function objects.
Requirements of algorithms are described under the form of concepts for their template
parameters.

Exact Geometric Computing Generic programming in CGAL Other languages

Algorithms and traits classes

Generic programming: algorithms are decoupled from the data structures and the
numerics. Similarly to the C++ STL.

Algorithms are parameterized (templates) by geometric traits classes which provide:

types of the objets manipulated by the algorithm: Point_2, Tetrahedron_3...

predicates that the algorithm applies to objets: Orientation_2,
Side_of_oriented_sphere_3...

constructions : Construct_mid_point_2, Construct_circumcenter_3,
Compute_squared_length_2...

These last two are provided under the form of function objects.
Requirements of algorithms are described under the form of concepts for their template
parameters.

Exact Geometric Computing Generic programming in CGAL Other languages

Algorithms and traits classes

Generic programming: algorithms are decoupled from the data structures and the
numerics. Similarly to the C++ STL.

Algorithms are parameterized (templates) by geometric traits classes which provide:

types of the objets manipulated by the algorithm: Point_2, Tetrahedron_3...

predicates that the algorithm applies to objets: Orientation_2,
Side_of_oriented_sphere_3...

constructions : Construct_mid_point_2, Construct_circumcenter_3,
Compute_squared_length_2...

These last two are provided under the form of function objects.
Requirements of algorithms are described under the form of concepts for their template
parameters.

Exact Geometric Computing Generic programming in CGAL Other languages

Kernel interface

CGAL geometric algorithms are parameterized by a geometric traits.

template < c lass T r i a ng u l a t i o nT ra i t s_ 3 ,
c lass Tr iangu la t i onDa taS t ruc tu re_3 = . . . >

c lass Tr iangu la t i on_3 ;

It provides a (attempted minimal) set of types and functions for the geometry :
Nested Type Requirements
Point_3 Assignable, DefaultConstructible
Segment_3 Assignable, DefaultConstructible
Orientation_3 Function object taking 4 Point_3, returning enum...
Circumcenter_3 ...

The Kernel concept is a superset for many different geometric traits concepts. There
are many different possible (and useful) models of Kernel.

Exact Geometric Computing Generic programming in CGAL Other languages

Kernel interface

CGAL geometric algorithms are parameterized by a geometric traits.

template < c lass T r i a ng u l a t i o nT ra i t s_ 3 ,
c lass Tr iangu la t i onDa taS t ruc tu re_3 = . . . >

c lass Tr iangu la t i on_3 ;

It provides a (attempted minimal) set of types and functions for the geometry :
Nested Type Requirements
Point_3 Assignable, DefaultConstructible
Segment_3 Assignable, DefaultConstructible
Orientation_3 Function object taking 4 Point_3, returning enum...
Circumcenter_3 ...

The Kernel concept is a superset for many different geometric traits concepts. There
are many different possible (and useful) models of Kernel.

Exact Geometric Computing Generic programming in CGAL Other languages

Kernel interface

CGAL geometric algorithms are parameterized by a geometric traits.

template < c lass T r i a ng u l a t i o nT ra i t s_ 3 ,
c lass Tr iangu la t i onDa taS t ruc tu re_3 = . . . >

c lass Tr iangu la t i on_3 ;

It provides a (attempted minimal) set of types and functions for the geometry :
Nested Type Requirements
Point_3 Assignable, DefaultConstructible
Segment_3 Assignable, DefaultConstructible
Orientation_3 Function object taking 4 Point_3, returning enum...
Circumcenter_3 ...

The Kernel concept is a superset for many different geometric traits concepts. There
are many different possible (and useful) models of Kernel.

Exact Geometric Computing Generic programming in CGAL Other languages

Kernel interface

CGAL geometric algorithms are parameterized by a geometric traits.

template < c lass T r i a ng u l a t i o nT ra i t s_ 3 ,
c lass Tr iangu la t i onDa taS t ruc tu re_3 = . . . >

c lass Tr iangu la t i on_3 ;

It provides a (attempted minimal) set of types and functions for the geometry :
Nested Type Requirements
Point_3 Assignable, DefaultConstructible
Segment_3 Assignable, DefaultConstructible
Orientation_3 Function object taking 4 Point_3, returning enum...
Circumcenter_3 ...

The Kernel concept is a superset for many different geometric traits concepts. There
are many different possible (and useful) models of Kernel.

Exact Geometric Computing Generic programming in CGAL Other languages

Kernel interface

CGAL geometric algorithms are parameterized by a geometric traits.

template < c lass T r i a ng u l a t i o nT ra i t s_ 3 ,
c lass Tr iangu la t i onDa taS t ruc tu re_3 = . . . >

c lass Tr iangu la t i on_3 ;

It provides a (attempted minimal) set of types and functions for the geometry :
Nested Type Requirements
Point_3 Assignable, DefaultConstructible
Segment_3 Assignable, DefaultConstructible
Orientation_3 Function object taking 4 Point_3, returning enum...
Circumcenter_3 ...

The Kernel concept is a superset for many different geometric traits concepts. There
are many different possible (and useful) models of Kernel.

Exact Geometric Computing Generic programming in CGAL Other languages

Kernels

The kernel can be used as a model for the geometric traits class parameter in
numerous algorithms.

Basic kernels, parameterized by number types:
Cartesian<FT>
Homogeneous<RT>

Ex : Triangulation_3<Cartesian<double> >

Cartesian<double> is a model of the TriangulationTraits_3 concept.

Kernel functionality is also available as free functions:
CGAL::orientation(p, q, r)

Exact Geometric Computing Generic programming in CGAL Other languages

Kernels

The kernel can be used as a model for the geometric traits class parameter in
numerous algorithms.

Basic kernels, parameterized by number types:
Cartesian<FT>
Homogeneous<RT>

Ex : Triangulation_3<Cartesian<double> >

Cartesian<double> is a model of the TriangulationTraits_3 concept.

Kernel functionality is also available as free functions:
CGAL::orientation(p, q, r)

Exact Geometric Computing Generic programming in CGAL Other languages

Kernels

The kernel can be used as a model for the geometric traits class parameter in
numerous algorithms.

Basic kernels, parameterized by number types:
Cartesian<FT>
Homogeneous<RT>

Ex : Triangulation_3<Cartesian<double> >

Cartesian<double> is a model of the TriangulationTraits_3 concept.

Kernel functionality is also available as free functions:
CGAL::orientation(p, q, r)

Exact Geometric Computing Generic programming in CGAL Other languages

Kernels

The kernel can be used as a model for the geometric traits class parameter in
numerous algorithms.

Basic kernels, parameterized by number types:
Cartesian<FT>
Homogeneous<RT>

Ex : Triangulation_3<Cartesian<double> >

Cartesian<double> is a model of the TriangulationTraits_3 concept.

Kernel functionality is also available as free functions:
CGAL::orientation(p, q, r)

Exact Geometric Computing Generic programming in CGAL Other languages

Kernels

The kernel can be used as a model for the geometric traits class parameter in
numerous algorithms.

Basic kernels, parameterized by number types:
Cartesian<FT>
Homogeneous<RT>

Ex : Triangulation_3<Cartesian<double> >

Cartesian<double> is a model of the TriangulationTraits_3 concept.

Kernel functionality is also available as free functions:
CGAL::orientation(p, q, r)

Exact Geometric Computing Generic programming in CGAL Other languages

Number types

Valid parameters for the Cartesian kernel...
FP :
double, float
Multiple precision :
Gmpz, Gmpq, CGAL::MP_Float, leda::integer...
Number types that include filtering:
leda::real, CORE::Expr, CGAL::Lazy_exact_nt<>

Exact Geometric Computing Generic programming in CGAL Other languages

Number types

Valid parameters for the Cartesian kernel...
FP :
double, float
Multiple precision :
Gmpz, Gmpq, CGAL::MP_Float, leda::integer...
Number types that include filtering:
leda::real, CORE::Expr, CGAL::Lazy_exact_nt<>

Exact Geometric Computing Generic programming in CGAL Other languages

Number types

Valid parameters for the Cartesian kernel...
FP :
double, float
Multiple precision :
Gmpz, Gmpq, CGAL::MP_Float, leda::integer...
Number types that include filtering:
leda::real, CORE::Expr, CGAL::Lazy_exact_nt<>

Exact Geometric Computing Generic programming in CGAL Other languages

Number types

Valid parameters for the Cartesian kernel...
FP :
double, float
Multiple precision :
Gmpz, Gmpq, CGAL::MP_Float, leda::integer...
Number types that include filtering:
leda::real, CORE::Expr, CGAL::Lazy_exact_nt<>

Exact Geometric Computing Generic programming in CGAL Other languages

Filtered kernels

Internal tools:
Interval arithmetic: CGAL::Interval_nt, boost::interval

Filtered predicates generator using C++ exceptions: CGAL::Filtered_predicate<>

CGAL::Filtered_kernel< K > provides some predicates based on static filtering, and
all others dynamic (IA).

Recommended kernels:
CGAL::Exact_predicates_exact_constructions_kernel
CGAL::Exact_predicates_inexact_constructions_kernel

Exact Geometric Computing Generic programming in CGAL Other languages

Filtered kernels

Internal tools:
Interval arithmetic: CGAL::Interval_nt, boost::interval

Filtered predicates generator using C++ exceptions: CGAL::Filtered_predicate<>

CGAL::Filtered_kernel< K > provides some predicates based on static filtering, and
all others dynamic (IA).

Recommended kernels:
CGAL::Exact_predicates_exact_constructions_kernel
CGAL::Exact_predicates_inexact_constructions_kernel

Exact Geometric Computing Generic programming in CGAL Other languages

Filtered kernels

Internal tools:
Interval arithmetic: CGAL::Interval_nt, boost::interval

Filtered predicates generator using C++ exceptions: CGAL::Filtered_predicate<>

CGAL::Filtered_kernel< K > provides some predicates based on static filtering, and
all others dynamic (IA).

Recommended kernels:
CGAL::Exact_predicates_exact_constructions_kernel
CGAL::Exact_predicates_inexact_constructions_kernel

Exact Geometric Computing Generic programming in CGAL Other languages

Example 1

template < typename K >
s t r u c t My_or ienta t ion_2
{

typedef typename K : : RT RT;
typedef typename K : : Point_2 Point_2 ;

CGAL : : O r i e n t a t i o n
opera tor () (const Point_2 &p , const Point_2 &q ,

const Point_2 &r) const
{

RT prx = p . x () − r . x () ; RT pry = p . y () − r . y () ;
RT qrx = q . x () − r . x () ; RT qry = q . y () − r . y () ;
r e t u r n s t a t i c _ c a s t <CGAL : : Or ien ta t i on > (

CGAL : : s ign (prx∗qry − qrx∗pqy)) ;
}

} ;

Exact Geometric Computing Generic programming in CGAL Other languages

Example 2

/ / We use i t :

typedef CGAL : : Cartesian <double > Kernel ;

Kernel : : Point_2 p (1 , 2) , q (2 , 3) , r (4 , 5) ;

My_or ientat ion_2 <Kernel > o r i e n t a t i o n ;

CGAL : : O r i e n t a t i o n o r i = o r i e n t a t i o n (p , q , r) ;

Exact Geometric Computing Generic programming in CGAL Other languages

Using Filtered_predicate

typedef CGAL : : Simple_car tes ian <double > K;
typedef CGAL : : Simple_car tes ian <CGAL : : In terva l_nt_advanced > FK;
typedef CGAL : : Simple_car tes ian <CGAL : : MP_Float> EK;
typedef CGAL : : Car tes ian_conver ter <K, EK> C2E;
typedef CGAL : : Car tes ian_conver ter <K, FK> C2F ;

typedef CGAL : : F i l t e r ed _ p r e d i c a t e <My_or ientat ion_2 <EK> ,
My_or ientat ion_2 <FK> ,
C2E, C2F> Or ien ta t i on_2 ;

. . .
K : : Point_2 p (1 , 2) , q (2 , 3) , r (3 , 4) ;
Or ien ta t ion_2 o r i e n t a t i o n ;
o r i e n t a t i o n (p , q , r) ;
r e t u r n 0 ;

Exact Geometric Computing Generic programming in CGAL Other languages

C++ is not everything: what about other languages?

We have started to write CGAL wrappers in other languages:

Scilab, Matlab: not object-oriented, complete rethinking needed

Python, Java: object-oriented, similar interface and paradigms

Exact Geometric Computing Generic programming in CGAL Other languages

Python interface

Python is:

object-oriented (syntax similar to C++)

interpreted (precompiled, no templates)

general purpose, used more and more for scientific tasks

C++ wrappers generators exist

cgal-python has already wrapped several CGAL packages
http://cgal-python.gforge.inria.fr/

http://cgal-python.gforge.inria.fr/

Exact Geometric Computing Generic programming in CGAL Other languages

Java interface

Java is:

as important as C++

simpler (garbage collection...)

syntax is in the same family as C++

status: the 2D triangulation class has been wrapped.

Exact Geometric Computing Generic programming in CGAL Other languages

Conclusion

Thank you for your attention.

	Exact Geometric Computing
	Generic programming in CGAL
	Other languages

