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Examples of Computational Geometry Algorithms

Convex hulls, triangulations, Voronoi diagrams

Emphasis on asymptotic complexity (Real-RAM model)

Algorithms manipulating large numbers of geometric objects
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CGAL: Software Architecture

General architecture: kernel, basic library, support library
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Kernel of geometric primitives

Algorithms are logically split into:

a combinatorial part (constructs a graph)

a numerical part (makes use of coordinates)

The latter calls primitives gathered in the kernel:

Basic objects: points, segments, lines, circles...

Predicates: orientations, abscissa comparisons...

Constructions: intersection, distance computations...
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Example: Delaunay triangulation

Incremental algorithm in 2 steps: point location and update.

Point location: orientation(p, q, r) predicate, sign of:˛̨̨̨
˛̨ 1 px py

1 qx qy
1 rx ry

˛̨̨̨
˛̨ =

˛̨̨̨
qx − px qy − py
rx − px ry − py

˛̨̨̨
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Delaunay triangulation

Incremental algorithm in 2 steps: point location and update.

Update: in_circle(p, q, r, s) predicate, sign of:˛̨̨̨
˛̨̨̨ 1 px py px2 + py2

1 qx qy qx2 + qy2

1 rx ry rx2 + ry2

1 sx sy sx2 + sy2

˛̨̨̨
˛̨̨̨
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Voronoi diagram of points
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Voronoi diagram of line segments
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Voronoi diagram of circles
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Robustness problems

Algorithms rely on mathematical theorems, like:

p

q r

s

ccw(s, q, r)
ccw(p, s, r) => ccw(p, q, r)
ccw(p, q, s)
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Robustness

Example where floating-point geometry differs from real geometry:
orientation of almost collinear points.

q (24, 24)

p (0.5, 0.5)

r (0.5 + εx, 0.5 + εy)

x=y

[Kettner, Mehlhorn, Schirra, P., Yap, ESA’04]
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Potential consequences on algorithms

Slightly wrong result

Completely wrong result

The algorithm stops on a invalid assertion

The algorithm loops forever
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Robustness: solutions

Case-by-case treatment: painful, error prone, not mathematically nice

Use exact predicates (Exact Geometric Computing)

Remarks

Floating-point fails on [almost] degenerate cases.

These cases happen more of less often in practice.
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Arithmetic: Number types

Geometric primitives are parameterized by the arithmetic.

Multiple precision integers [GMP, MPFR, LEDA...]

Multiple precision rationals

Multiple precision floating-point

Interval arithmetic (with double or MP bounds)

Algebraic numbers:

Numerical evaluation with separation bounds [CORE, LEDA]

Polynomials, Sturm, resultants... [CGAL, SYNAPS]
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Filtered predicates

Speed up exact predicates using a filter:

floating-point evaluation with a certificate

multiple precision only when needed

Examples

interval arithmetic (dynamic filters),
[Burnikel, Funke, Seel – Brönnimann, Burnikel, P.’98]

or static code analysis (static filters) [Fortune’93... Melquiond, P.’05]

Programming aspects:

automatic generation of filtered predicates

cascading/pipelining various methods
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Filtered number types
DAG of the operations in memory, e.g.:

√
x +

√
y −

p
x + y + 2
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Approximation and iterative precision refinement, on demand.
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Filtered predicates: benchmarks

Running time of a 3D Delaunay triangulation.

R5 E M B D
double 40.6 41.0 43.7 50.3 loops

MPF 3,063 2,777 3,195 3,472 214
Interval + MPF 137.2 133.6 144.6 165.1 15.8
semi static + Interval + MPF 51.8 61.0 59.1 93.1 8.9
almost static + semi static
+ Interval + MPF 44.4 55.0 52.0 87.2 8.0
Shewchuk’s predicates 57.9 57.5 62.8 71.7 7.2
CORE Expr 570 3520 1355 9600 173
LEDA real 682 640 742 850 125
Lazy_exact_nt<MPF> 705 631 726 820 67

An important criteria: failure rate of filters.
User interface in CGAL: choice of different kernels.
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Filtered geometric constructions

Additional difficulty: storage of geometric objects in memory
Bonus: regrouping computations, and less memory
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Algorithms and traits classes

Generic programming: algorithms are decoupled from the data structures and the
numerics. Similarly to the C++ STL.

Algorithms are parameterized (templates) by geometric traits classes which provide:

types of the objets manipulated by the algorithm: Point_2, Tetrahedron_3...

predicates that the algorithm applies to objets: Orientation_2,
Side_of_oriented_sphere_3...

constructions : Construct_mid_point_2, Construct_circumcenter_3,
Compute_squared_length_2...

These last two are provided under the form of function objects.
Requirements of algorithms are described under the form of concepts for their template
parameters.
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Kernel interface

CGAL geometric algorithms are parameterized by a geometric traits.

template < c lass T r i a ng u l a t i o nT ra i t s_ 3 ,
c lass Tr iangu la t i onDa taS t ruc tu re_3 = . . . >

c lass Tr iangu la t i on_3 ;

It provides a (attempted minimal) set of types and functions for the geometry :
Nested Type Requirements
Point_3 Assignable, DefaultConstructible
Segment_3 Assignable, DefaultConstructible
Orientation_3 Function object taking 4 Point_3, returning enum...
Circumcenter_3 ...

The Kernel concept is a superset for many different geometric traits concepts. There
are many different possible (and useful) models of Kernel.
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Kernels

The kernel can be used as a model for the geometric traits class parameter in
numerous algorithms.

Basic kernels, parameterized by number types:
Cartesian<FT>
Homogeneous<RT>

Ex : Triangulation_3<Cartesian<double> >

Cartesian<double> is a model of the TriangulationTraits_3 concept.

Kernel functionality is also available as free functions:
CGAL::orientation(p, q, r)
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Number types

Valid parameters for the Cartesian kernel...
FP :
double, float
Multiple precision :
Gmpz, Gmpq, CGAL::MP_Float, leda::integer...
Number types that include filtering:
leda::real, CORE::Expr, CGAL::Lazy_exact_nt<>
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Filtered kernels

Internal tools:
Interval arithmetic: CGAL::Interval_nt, boost::interval

Filtered predicates generator using C++ exceptions: CGAL::Filtered_predicate<>

CGAL::Filtered_kernel< K > provides some predicates based on static filtering, and
all others dynamic (IA).

Recommended kernels:
CGAL::Exact_predicates_exact_constructions_kernel
CGAL::Exact_predicates_inexact_constructions_kernel
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Example 1

template < typename K >
s t r u c t My_or ienta t ion_2
{

typedef typename K : : RT RT;
typedef typename K : : Point_2 Point_2 ;

CGAL : : O r i e n t a t i o n
opera tor ( ) ( const Point_2 &p , const Point_2 &q ,

const Point_2 &r ) const
{

RT prx = p . x ( ) − r . x ( ) ; RT pry = p . y ( ) − r . y ( ) ;
RT qrx = q . x ( ) − r . x ( ) ; RT qry = q . y ( ) − r . y ( ) ;
r e t u r n s t a t i c _ c a s t <CGAL : : Or ien ta t i on > (

CGAL : : s ign ( prx∗qry − qrx∗pqy ) ) ;
}

} ;
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Example 2

/ / We use i t :

typedef CGAL : : Cartesian <double > Kernel ;

Kernel : : Point_2 p (1 , 2 ) , q (2 , 3 ) , r (4 , 5 ) ;

My_or ientat ion_2 <Kernel > o r i e n t a t i o n ;

CGAL : : O r i e n t a t i o n o r i = o r i e n t a t i o n ( p , q , r ) ;
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Using Filtered_predicate

typedef CGAL : : Simple_car tes ian <double > K;
typedef CGAL : : Simple_car tes ian <CGAL : : In terva l_nt_advanced > FK;
typedef CGAL : : Simple_car tes ian <CGAL : : MP_Float> EK;
typedef CGAL : : Car tes ian_conver ter <K, EK> C2E;
typedef CGAL : : Car tes ian_conver ter <K, FK> C2F ;

typedef CGAL : : F i l t e r ed _ p r e d i c a t e <My_or ientat ion_2 <EK> ,
My_or ientat ion_2 <FK> ,
C2E, C2F> Or ien ta t i on_2 ;

. . .
K : : Point_2 p ( 1 , 2 ) , q ( 2 , 3 ) , r ( 3 , 4 ) ;
Or ien ta t ion_2 o r i e n t a t i o n ;
o r i e n t a t i o n ( p , q , r ) ;
r e t u r n 0 ;
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C++ is not everything: what about other languages?

We have started to write CGAL wrappers in other languages:

Scilab, Matlab: not object-oriented, complete rethinking needed

Python, Java: object-oriented, similar interface and paradigms
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Python interface

Python is:

object-oriented (syntax similar to C++)

interpreted (precompiled, no templates)

general purpose, used more and more for scientific tasks

C++ wrappers generators exist

cgal-python has already wrapped several CGAL packages
http://cgal-python.gforge.inria.fr/

http://cgal-python.gforge.inria.fr/
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Java interface

Java is:

as important as C++

simpler (garbage collection...)

syntax is in the same family as C++

status: the 2D triangulation class has been wrapped.
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Conclusion

Thank you for your attention.
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