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Arrangement Definition

Given a collection Γ of planar curves, the arrangement A(Γ) is
the partition of the plane into vertices, edges and faces induced
by the curves of Γ

An arrangement of lines An arrangement of circles
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Arrangement Background

Arrangements have numerous applications
robot motion planning, computer vision, GIS, optimization,
computational molecular biology

A planar map of the Boston area showing the top of the arm of cape cod.

Raw data comes from the US Census 2000 TIGER/line data files.
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The Arrangement_2 Package

Constructs, maintains, modifies, traverses, queries, and
presents subdivisions of the plane
Robust and exact

All inputs are handled correctly (including degenerate)
Exact number types are used to achieve exact results

Efficient
Generic, easy to interface, extend, and adapt

Part of the CGAL basic library
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Arrangement Traits Classes

Define the family of curves
Aggregate geometric types and operations over the types

Curve Family Arithmetic Boundness Class Name

linear segments rational bounded Arr_non_caching_segment_traits_2
Arr_segment_traits_2

linear segments, rays, lines rational bounded Arr_linear_traits_2
piecewise linear curves rational bounded Arr_polyline_traits_2

circular arcs, linear segments rational bounded Arr_circle_segment_traits_2
Arr_circular_line_arc_traits_2

algebraic curves degree≤ 2 algebraic bounded Arr_conic_traits_2
unbounded Arr_conix_traits_2

algebraic curves degree≤ 3 algebraic unbounded Arr_cubix_traits_2
algebraic curves degree≤ 4 algebraic unbounded Arr_quadrix_traits_2
planar Bézier curves algebraic unbounded Arr_Bezier_curve_traits_2
rational function arcs algebraic unbounded Arr_rational_arc_traits_2
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Arrangement Point Location

Given a subdivision A of the space into cells and a query point
q, find the cell of A containing q

Fast query processing

Reasonably fast preprocessing

Small space data structure

Naive Walk RIC Landmarks Triangulat PST

Preprocess time none none O(n log n) O(k log k) O(n log n) O(n log n)

Memory space none none O(n) O(k) O(n) O(n log n)(∗)

Query time bad reasonable good good quite good good
Code simple quite simple complicated quite simple modular complicated

Walk — Walk along a line RIC — Random Incremental Construction based on trapezoidal decomposition
Triangulat — Triangulation PST — Persistent Search Tree
k — number of landmarks
(*) Can be reduced to O(n)
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Arrangements on Surfaces — A Glimpse to the Future

A direction for future development is to extend the package to
support arrangements on continuous two-dimensional
parametric surfaces, which may

be unbounded
contain curves of discontinuity
contain singularity points
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Boolean Set Operations

Union Intersection Complement
For two point sets P and Q and a point r :

Complement R = P
Union R = P ∪ Q
Intersection R = P ∩ Q = P ∪ Q
Difference R = P \ Q = P ∩ Q
Symmetric Difference R = (P \ Q) ∪ (Q \ P)

Intersection predicate P ∩ Q 6= ∅ Overlapping cell(s) are not explicitly computed

Containment predicate r ∈ P
Interior, Boundary, Closure
Regularization R = closure(interior(P))
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The Nef_polyhedron_{2,S2,3} Packages

A Nef polyhedron is obtained from a finite set of open
halfspaces by set complement and set intersection operations.

Supports the construction of Nef polyhedron
Nef_polyhedron_2 — in R2

Nef_polyhedron_S2 — embedded on S2

Nef_polyhedron_3 — in R3

Supports
Boolean set operations
interior, boundary, and closure operations

composed operations, e.g., regularization

Robust and efficient
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The Boolean_set_operation_2 Package

Supports
regularized Boolean set-operations
intersection predicates
point containment predicates

Operands and results are regularized point sets bounded
by x-monotone curves referred to as general polygons

General polygons may have holes

Based on the Arrangement_2 and Polygon_2 packages
Robust and efficient

Extremely efficient aggregated operations

The union of eight unit discs
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VLSI: Union of PCB Components

Input No. of No. of Union Size Time)
File Polygons Circles V E F (sec.)

VLSI_1 2593 645 13130 13130 614 3.50
VLSI_2 22406 294 14698 14698 357 24.70

V — no. of vertices E — no. of edges F — no. of faces

Courtesy of Maniabarco Inc.
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Envelopes in R2

Given a set of x-monotone curves C = {C1, C2, . . . , Cn}, their
lower envelope (resp. upper envelope) is the point-wise
minimum (resp. maximum) of all curves.

The minimization diagram (resp. maximization diagram) of C is
the subdivision of the x-axis into cells, such that the identity of
the curves that induce the lower (resp. upper) envelope over a
specific cell of the subdivision (an edge or a vertex) is the same.

A

BC

D

E

F

G

H

A A,B B C CD F G G

The minimization diagram of 8 line
segments

Each diagram vertex points to the point
associated with it

Each diagram edge is marked with
segments that induce it



Arrangements Boolean Set Operations Envelopes Minkowski Sums

Computer Aided Manifacturing

The lower envelope of a set of line segments and hyperbolic
arcs obtained by the radial projection of a triangulated Utah
teapot.
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Envelopes in R3

Given a set of xy -monotone surfaces S = {S1, S2, . . . , Sn},
their lower envelope (resp. upper envelope) is the point-wise
minimum (resp. maximum) of all surfaces.

The minimization diagram (resp. maximization diagram) of S is
the subdivision of the xy -plane into cells, such that the identity
of the surfaces that induce the lower (resp. upper) diagram over
a specific cell of the subdivision (a face, an edge, or a vertex) is
the same.
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The Envelope_3 Package

Constructs lower and upper envelopes of surfaces
Surface Family Class Name
triangles Env_triangle_traits_3
spheres Env_sphere_traits_3
planes and half planes Env_plane_traits_3
quadrics Env_quadric_traits_3

Based on the Arrangement_2 package
Exploits

Overlay computation (using the sweep line framework)
Isolated points
Zone traversal

Robust and efficient
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Voronoi Diagrams of Points in the Plane

Computed as upper envelopes of planes
Represented as planar arrangements of unbounded curves

points along a line segment points on a grid inside a square

points on a circle points on a square boundary
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Minkowski Sum in R2 Background

Given two sets P and Q in the plane, their Minkowski sum,
denoted A ⊕ B is:

P ⊕ Q = {p + q |p ∈ P, q ∈ Q}

Minkowski sums are used in many applications
motion planning, computer-aided design, manufacturing
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The Minkowski_sum_2 Package

Based on the Arrangement_2, Polygon_2, and
Partition_2 packages
Works well with the Boolean_set_operations_2
package

e.g., It is possible to compute the union of offset polygons

Robust and efficient
Supports Minkowski sums of two simple polygons

Implemented using either decomposition or convolution
Exact

Supports Minkowski sums of a simple polygon and a disc
(polygon offseting)

Offers either an exact computation or a conservative
approximation scheme
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Motion Planning: Computing the free space

The input robot and the obstacle are non-convex
Exploits the convolution method
The output sum contains four holes
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