![]() |
AdaptableBinaryFunction providing an integral division.
Integral division (a.k.a. exact division or division without remainder) maps ring elements (x,y) to ring element z such that x = yz if such a z exists (i.e. if x is divisible by y). Otherwise the effect of invoking this operation is undefined. Since the ring represented is an integral domain, z is uniquely defined if it exists.
AdaptableBinaryFunction
| AlgebraicStructureTraits::IntegralDivision::result_type | |
|
Is AlgebraicStructureTraits::Type.
| |
| AlgebraicStructureTraits::IntegralDivision::first_argument | |
|
Is AlgebraicStructureTraits::Type.
| |
| AlgebraicStructureTraits::IntegralDivision::second_argument | |
|
Is AlgebraicStructureTraits::Type.
| |
| result_type | integral_division ( first_argument_type x , second_argument_type y ) | |
| returns x/y, this is an integral division. | ||
| template <class NT1, class NT2> | ||
| result_type | integral_division ( NT1 x , NT2 y ) | |
| This operator is defined if NT1 and NT2 are ExplicitInteroperable with coercion type AlgebraicStructureTraits::Type. | ||
AlgebraicStructureTraits
AlgebraicStructureTraits::Divides