
Computing Four-Body Protein Energy Potentials

with Incremental 3D Delaunay Triangulation in CGAL

David O’Brien Jack Snoeyink

Department of Computer Science

University of North Carolina at Chapel Hill

{obrien,snoeyink}@cs.unc.edu

Abstract

We use the CGAL library to improve the speed and efficiency

of the lattice chain growth algorithm, an ab initio method

for protein structure prediction and for constructing protein

decoys. This Monte Carlo algorithm repeatedly computes

the energy of partial protein chains as they are grown one

amino acid at a time. Researchers had tried to apply an

energy function based on a 3D Delaunay triangulation but

could not, due to the cost of triangulating and evaluating

each tetrahedron. Using CGAL’s incremental 3D Delaunay

triangulation routines, we dramatically reduce this cost,

allowing the four-body potential to be calculated quickly

enough for lattice chain growing.

1 Introduction

One of the greatest outstanding problems in structural
biochemistry is the ab initio protein folding problem.
Simply stated, the goal is to predict the 3D folded state
of a protein given only it’s amino acid sequence. In this
work, we use CGAL to improve the implementation of
one well-know ab initio method known as the lattice
chain growth algorithm. This algorithm produces
thousands of decoy structures from which we either
pick or derive one or more solutions. The decoys are
built with a Monte Carlo procedure that adds successive
amino acids into a candidate folded structure.

Fundamental to the chain growth algorithm is the
calculation of an energy function. Recent implementa-
tions have tried to use the four-body statistical potential
function, which is based on the idea of contact energies.
When two or more amino acid side chains are in close
proximity in the folded state, they contribute some
contact energy to the chain. The total energy potential
of the folded protein chain is the sum of all the contact
energies of nearby clusters of amino acid side chains.
This energy function is based on the frequency of
observed occurrences of specific clusters of four amino
acid side chain types. The 3D Delaunay triangulation
of the side chain locations determines the clusters for
any chain.

Gan et al. [6, 7] sought to use the four-body potential
to evaluate energies for the chain growth algorithm on a
lattice, but were unable to do so because of the cost of
computing the 3D Delaunay triangulation. Instead they
had to use a simpler two-body potential by Miyazawa
and Jernigan [10] to build decoys. They could use the
four-body potential only for a postiori analysis of the de-
coys. This paper describes how to reduce the cost of the
3D Delaunay triangulation using incremental scheme
supported by the CGAL library. These improvements
allow the use of four-body potentials in chain growing
and in other applications.

The next section gives an overview of protein ge-
ometry, the four-body potential, and the details of
the chain growth algorithm. Section 3 describes our
improved implementation of the algorithm using the
CGAL library. Section 4 presents our results.

2 Lattice Chain Growth Algorithm

A protein is a complex 3D structure that is built from
a sequence of amino acids attached to a backbone
polypeptide chain. The backbone is built of a three-
atom sequence, N -Cα-C, repeated once for each amino
acid. A hydrogen atom is bonded to the first nitrogen
atom and to the Cα carbon atom while an oxygen atom
is double bonded to the second carbon atom. Amino
acid side chains are attached to each Cα atom on the
backbone. See figure 1.

The backbone of a protein can be modeled with all of
the atoms described above, or with a simplified model.
The lattice chain growth algorithm described in this
work uses the Cα chain model, which consists of just the
Cα atom positions. Although this simplification does
not capture the side chain positions, it still captures
the majority of a protein’s folded shape and structure.
See figure 2.

Krishnamoorthy et al. and Carter et al. have used
a four-body statistical potential to distinguish between
native and non-native protein structures [2, 9]. The



N

N

N

CαC
Cα

Cα

C

C

amino acid
side chain

amino acid
side chain

amino acid
side chain

O

O

O
Cββββ

Cββββ

Cββββ

Figure 1. Simple three amino acid protein showing all non-hydrogen
atoms in the backbone and large circles for the side chains.

potential scores proteins by using the 3D Delaunay tri-
angulation to group sets of four neighboring amino acid
side chains into clusters [11, 9]. Each cluster is classified
by its four amino acid types (8855 combinations), and
by the adjacency of the amino acids along the backbone
(5 cases). In preprocessing, a table is created that
stores the log-likelihood of the occurrence of each type
of cluster in a training set of proteins. A new protein
is then scored by summing the log-likelihood of each of
its Delaunay tetrahedra.

The lattice chain growth algorithm grows proteins
by successively adding amino acid side chains until the
entire sequence is complete. It was originally proposed
by Levitt [8]. Gan and Tropsha [6, 7] implemented it
using statistical potentials as the energy functions. This
implementation constrains the Cα atom locations to the
nodes of the 311 lattice, which requires that successive
atoms be placed three steps apart in one of the three
spatial dimensions and only one step apart in the other
two. The basic algorithm is independent of the lattice
type and can even be implemented in free space without
a lattice. However, the lattice greatly simplifies collision
detection and placement of candidate positions. The
outline of the algorithm is given below.

1. Place the first two Cα atoms into the lattice.

2. Find all possible lattice locations for the next Cα

atom. Discard any grid locations that are less than
a prescribed distance from all other Cα atoms.

3. For each location, compute the energy of the partial
chain.

4. Convert energy values into transition probabilities.

5. Choose a location based on these probabilities and
add the next Cα atom at this location.

6. Loop back to step 2 until all Cα atoms are added.

To build a protein of 100 amino acids typically
requires between 1000 and 1500 energy evaluations

Figure 2. Side by side comparison of an all non-hydrogen atom
backbone representation on the left and the Cα chain model on the
right. Structures are rendered with depth cueing. Thinner and lighter
segments are deeper in the background. Two secondary structures,
an α helix and a β sheet, are discernible in both models. The protein
is 1PNH, a scorpion toxin analog with 31 amino acid residues.

depending on the type of lattice. An equal number of 3D
Delaunay triangulations must be calculated if we use the
four-body potential as our energy function step 4. This
can easily dominate the running time of the algorithm.
Indeed, Gan et al. [7] were unable to build with this
potential due to their triangulation method. In this
work, we use the CGAL 3D Delaunay triangulation data
structure to implement an incremental triangulation
that overcomes this limitation.

Incremental 3D Delaunay triangulation is difficult
because the insertion of a new vertex can radically alter
the geometry of the triangulation. Insertion will always
create new tetrahedra, and may also force several other
tetrahedra to be removed. In the worst case, every
tetrahedra may be altered. For this reason, the typical
approach to computing the four-body potential has been
to rebuild the entire triangulation on each insertion
or deletion and then rescore all tetrahedron to avoid
either overlooking or double counting tetrahedra. This
is wasteful, as typically only a handful of tetrahedra
are either created or destroyed with the insertion of
a new vertex. A better approach is to determine
which tetrahedra would conflict with the new vertex
and then subtract their contribution from the current
total score. One can then insert the new vertex, create
new tetrahedra and add their contribution to the total
score.

3 Methods

The CGAL library function T.find conflicts(v) returns
a list of tetrahedra that would have to be removed if
vertex v were inserted into a 3D Delaunay triangulation,
T. We can score these tetrahedra and remove their
contributions from the current score of the partial chain
without actually removing them. T.find conflicts(v)



Figure 3. Two 2D examples of T.find conflicts(v). A new vertex v,
black dot, is placed inside the convex hull of the triangulation (top
row) and outside the convex hull (bottom row). The left figures show
the empty sphere properties violated by v. The middle figures show
the result of the function call T.find conflicts(v), with conflicting
triangles in grey and boundary facets in bold. The right figures show
the new cells.

also returns a list of triangles, or tetrahedra facets, that
define the boundary region of these tetrahedra. These
facets tell us what new tetrahedra would need to be
added. The three points on each facets would form
a new tetrahedron with the vertex v. Therefore, we
can calculate the contribution of these new tetrahedra
without actually inserting vertex v. See figure 3. We
also maintain a hash table that stores the contribution
to the potential of previously scored tetrahedra and that
uses a CGAL cell handle as an index.

The two new routines insertNewVertex(tess T, vert v)
and scoreNewCandidate(tess T, vert v) are the basis of
the incremental 3D Delaunay triangulation algorithm.
The algorithm maintains the triangulation of the partial
chain, T , the current score, currentPartialScore, and
the hash table of previously scored tetrahedra. The
steps of insertNewVertex(tess T, vert v) are as follows.

1. Call T.find conflicts(v) from the CGAL library to
get a list of conflicting tetrahedra, confCells, and
a list of facets defining the boundary of confCells.

2. For each conflicting tetrahedron, look up its score
in the hash table and subtract it from currectPar-
tialScore.

3. Call T.insert in hole(v, confCells) from the CGAL
library to insert v into the triangulation T . This
is more efficient than T.insert(v) which would
internally duplicate the work of T.find conflicts(v)
in step 1.

4. For each tetrahedron adjacent to v in the
triangulation, compute its score and add it to
curentPartialScore. Insert each new tetrahedron
score into the hash table.

The function scoreVertexCandidate(tess T, vert v)
returns what would be the total score of the chain
if v were inserted into T . It computes the score
without actually inserting v into T or scoring each
individual tetrahedron in the triangulation. The steps
of scoreVertexCandidate(tess T, vert v) are as follows.

1. Set candidateScore equal to currentPartialScore.

2. Call T.find conflicts(v) from the CGAL library to
get a list of tetrahedra with conflicts and a list
of facets defining the boundary of the regions in
conflict.

3. For each conflicting cell, look up its contribution in
the hash table and subtract it from candidateScore.

4. For each boundary facet, combine its three vertices
with v to define a new tetrahedron. Compute this
tetrahedron’s score and add it to candidateScore.

5. Return candidateScore.

An alternative to the hash table is to store the scores
in the Delaunay cells by adding a new data member.
However, we have also implemented a variation of the
algorithm that calculates the potential of inserting the
next two Cα atoms. This requires that the first of these
Cα atoms actually be inserted to score the candidate
configuration. Because this may destroy some cells, we
must use an external hash table. The insertion will
also invalidate some of our cell handle keys, so we use a
different key based on index values stored in the vertices.
We choose to be consistent and use a hash table in all
cases, but we use the more efficient cell handle key when
possible.

Using routines insertNewVertex(tess T, vert v) and
scoreVertexCandidate(tess T, vert v), we can now mod-
ify the lattice chain growth algorithm to use the four-
body potential as its energy function.

1. Place the first two Cα atoms into the lattice and
insert them into the triangulation T .

2. Find all possible lattice locations for the next Cα

atom. Discard any grid locations that are less than
a prescribed distance from all other Cα atoms.

3. For each location v, compute the energy of the
partial chain with scoreVertexCandidate(T, v).

4. Convert energy values into a transition probabili-
ties.

5. Choose a location based on these probabilities and
add the next Cα atom at this location. Also add it
to triangulation T with insertNewVertex(T, v)

6. Loop back to step 2 until all Cα atoms are added.

Triangulating points on a regular lattice will lead
to many degeneracies. We tried many of the CGAL



Chain Gan Impl CGAL Impl Speedup
Length MJ DT DT Incr DT/Incr

30 44.0 27,005.4 4,715.4 151.3 31.2
63 56.8 60,043.9 18,310.2 417.0 43.9
92 65.4 N/A 35,612.9 673.2 52.9
155 102.5 N/A 89,982.6 1,261.7 71.3

Table 1. Running times in seconds to build 1000 decoys. Timings
are in seconds for various length chains for the Gan 2-body potential
build, the Gan four-body potential build, a CGAL version that
calculates a complete triangulation at each step, and the CGAL
incremental 3D Delaunay triangulation. The incremental version
performs more than 30 times faster in all cases. Timings were done
on an SGI Onyx2 R12000 processor at 300 MHz.

kernels that use filtering or exact number types, but
were unsatisfied with their speed. We settled on
the Simple cartesian〈double〉 kernel and used our own
simple perturbation scheme that is very stable. Because
we are using a Monte Carlo algorithm that occasionally
takes a less than optimal move, we just accept any inac-
curate tetrahedra the Simple cartesian〈double〉 kernel
may produce. This allows us to meet our primary goals
of speed and stability.

4 Results

To measure the improvement in performance due to
incremental 3D Delaunay triangulation, we compared
four versions of the lattice chain growth algorithm,
two from the original program by Gan et al. [7] and
two based on our implementation of the algorithm.
From the Gan implementation, we tested building with
the two-body MJ potential and with the four-body
potential. From our CGAL implementation, we tested
building with a completely new triangulation for each
potential evaluation and with incremental triangulation.
We also calculated the speed-up, which is the running
time of our version using a complete retriangulation
divided by the running time of the incremental version.
We built chains of length 30, 63, 92 and 155 with each
run building 1000 decoys. The complete timings are
given in table 1.

Although the MJ potential version is the fastest,
researchers still wish to build with a potential that
can more accurately discriminate between folded and
unfolded protein chains. Our version using a com-
plete retriangulation is already faster than the Gan
implementation, and the incremental version is more
than two orders of magnitude faster. Speed-up best
measures the advantage of incremental triangulation.
The incremental version is more than 30 times faster
for short chains and more than 70 times faster for the
longest chains. The speed-up increases because the
running time of the incremental version grows more
slowly than the complete retriangulation version. The
cost of a complete triangulation is directly related to

the number of amino acids in the chain, while the cost
of an incremental insertion remains relatively constant.

5 Acknowledgements

We thank our colleagues in the biogeometry group and
in the School of Pharmacy for their input. Special
acknowledgement goes to Bala Krishnamoorthy and
Alex Tropsha for their work on four-body potentials.
Hin Hark Gan provided a great service by giving us
his original source code, which greatly aided our imple-
mentation of the algorithm. We gratefully acknowledge
support from NFS grants 9988742 and 0076984.

References

[1] Branden C., Tooze J. (1999), Introduction to Pro-
tein Structure, 2nd ed., Garland Publishing.

[2] Carter C. W., LeFebvre C., Cammer S., Tropsha
A., Edgell H. M. (2001) Four-body potentials reveal
protein-specific correlations to stability changes
caused by hydrophobic core mutations. J Mol Bio,
311: 625–638.

[3] de Berg M., van Kreveld M., Overmars M.,
Schwarzkopf O. (2000) Computational Geometry:
Algorithms and Applications. Berlin, Germany:
Springer-Verlag.

[4] Devillers O. (2002) On deletion in Delaunay trian-
gulation. Internat J Comput Geom Appl, 12: 193–
205.

[5] Fabri A., Giezeman G., Kettner L., Schirra S.,
Schonherr S. (2000) On the design of CGAL, a
computational geometry algorithms library. Softw
Pract Exper, 30: 1167–1202.

[6] Gan H. H., Tropsha A., Schlick T. (2000) Gener-
ating folded protein structures with a lattice chain
growth algorithm. J Che Phys, 13: 5511–5524.

[7] Gan H. H., Tropsha A., Schlick T. (2001) Lattice
Protein Folding With Two and Four-Body Statis-
tical Potentials. Proteins, 43: 161–174.

[8] Hinds D., Levitt M., (1992) A lattice model for
protein structure prediction at low resolution. Proc
Natl Acad Sci USA, 89: 2536–2540.

[9] Krishnamoorthy B., Tropsha A. (2003) Develop-
ment of a four-body statistical pseudo-potential
to discriminate native from non-native protein
conformations. Bioinformatics, 19: 1540-1548.

[10] Miyazawa S., Jernigan R. (1996) Residue-residue
potentials with a favorable contact pair term and
an unfavorable high packing density term, for
simulation and threading. J Mol Bio, 256: 623–
644.

[11] Singh R., Tropsha A., Vaisman I. (1996) Delaunay
tessellation of proteins. J Comput Biol, 3: 213–222.


