
A Tutorial on CGAL Polyhedron
for Subdivision Algorithms∗

Le-Jeng Shiue† Pierre Alliez‡ Radu Ursu§ Lutz Kettner¶

Abstract

We give an overview of the tutorial for the CGAL::
Polyhedron 3 and its use in subdivision algo-
rithms. The full tutorial and the accompanying
source code are available at http://www.cgal.
org/Tutorials/Polyhedron/.

Introduction

Polyhedron data structures based on the concept of
halfedges have been very successful for the design
of general algorithms on meshes. Common prac-
tice is to develop such data structure from scratch,
since clearly a first implementation is at the level of
a students homework assignment. But then, these
data structures consist almost entirely of pointers for
all sort of incidence informations. Maintaining them
consistently during mesh operations is not anymore a
trivial linked-list update operation. So, moving from
a students exercise to a reliable research implemen-
tation, including maintaining and optimizing it, is a
respectable software task.

What is common practice for simple data struc-
tures, such as linked lists, should be common prac-
tice even more so for mesh data structures, namely,
to use a good, flexible, and efficient library imple-
mentation. In C++ the Standard Template Library,
STL, is an excellent address for our analog example
of the linked lists [Aus99], and we argue in the full
tutorial that the Polyhedron data structure in CGAL

is such a flexible mesh data structure [Ket99], and
it comes with a rich and versatile infrastructure for
mesh algorithms. CGAL, the Computational Geom-
etry Algorithms Library, is a C++ library available
from www.cgal.org [FGK+00].

We strongly believe that such a tutorial with its
wealth of information will give a head start to new
researches and implementations of mesh algorithms.
We also believe that it will raise the quality of im-
plementations. Firstly, it encourages the use of well

∗Partially supported by the grant NSF 9457806-CCR and IST
Programme of the EU as a Shared-cost RTD (FET Open) Project
under Contract No IST-2000-26473 (ECG - Effective Computa-
tional Geometry for Curves and Surfaces).

†SurfLab, University of Florida
‡GEOMETRICA, INRIA Sophia-Antipolis
§Geometry Factory, Sophia-Antipolis
¶Max-Planck-Institut für Informatik, Saarbrücken, Germany

Figure 1 – The polyhedron viewer running on Win-
dows. A coarse polygon mesh is subdivided using
the quad-triangle subdivision scheme.

tested and over time matured implementations, e.g.,
CGAL::Polyhedron 3 in its current design is about
five years publicly released and used. Secondly, it
documents good implementation choices, e.g., the
example programs can be used as starting points
for evolutionary software development. Thirdly, it
offers easy access to additional functionality, such
as the efficient self intersection test, that otherwise
could be expandable in a research prototype.

The tutorial is organized around subdivision sur-
faces in a polyhedron viewer. The polyhedron
viewer (Figure 1) demonstrates the basic function-
alities of the CGAL::Polyhedron 3 and some ex-
tended functionalities such as file I/O, mesh su-
perimposition, and trackball manipulation. Several
subdivision surfaces are supported in the polyhe-
dron viewer, including Catmull-Clark, Loop, Doo-
Sabin,

√
3 and Quad-Triangle subdivisions. The

tutorial shows how to implement subdivision sur-
faces in two different mechanisms provided by
CGAL::Polyhedron 3: Euler operators and mod-
ifier callback mechanism. A

√
3 subdivision im-

plementation is designed based on the Euler oper-
ators and a Quad-Triangle subdivision implemen-

tation is designed based on overloading the modi-
fier. Extended from the previous design, a combi-
natorial subdivision library (CSL) is then proposed
with increased sophistication and abstraction. CSL
abstracts the geometry operations from the refine-
ments. Subdivisions in CSL are build from refine-
ment host with a template geometry policy. Sev-
eral fundamental refinement schemes are provided
within CSL. They are instantiated with a geometry
policy that can be user defined.

The goal of this tutorial is to show how to use
CGAL::Polyhedron 3 on basic graphics function-
alities, such as rendering and interactive track-
ball manipulation, and how to design and imple-
ment algorithms around meshes. Since connectiv-
ity and geometry operations are the primal imple-
mentation components in mesh algorithms, subdivi-
sions are chosen to demonstrate both operations on
CGAL::Polyhedron 3. Readers intended to design
and implement mesh algorithms other than subdivi-
sions will also be benefited from the tutorial.

Intended Audience

The intended audience of the tutorial are researchers,
developers or students developing algorithms around
polyhedron meshes. Knowledge of the halfedge data
structure and subdivisions are prerequisites. Short
introductions of these two topics are given in the tu-
torial. The tutorial assumes familiarity with the C++
template mechanism and the key concepts of generic
programming [Aus99].

CGAL Polyhedron

CGAL Polyhedron (CGAL::Polyhedron 3) is re-
alized as a container class that manages geometry
items such as vertices, halfedges, and facets with
their incidences. CGAL::Polyhedron 3 has chosen
the halfedge data structure as the underlying con-
nectivity structure. In the halfedge data structure,
a halfedge is associated with a facet and stores the
adjacency pointers to it previous, next and opposite
halfedge (Figure 2). The details of the halfedge data
structure and the CGAL::Polyhedron 3 based on it
are described in [Ket99].

Figure 2 – One halfedge and its incident primitives.
The next halfedge, the opposite halfedge, and the in-
cident vertex are mandatory, the remaining elements
are optional.

What are the potential obstacles in using CGAL
and CGAL::Polyhedron 3?

1. Is it fast enough? Yes. CGAL, coming from
the field of Computational Geometry, might
have a reputation of using slow exact arith-
metic to be on the safe side, but nonetheless,
we know where to apply the right techniques
of exact arithmetic to gain robustness and yet
not to loose efficiency. In addition, CGAL uses
generic programming and compile-time poly-
morphism to realize flexibility without affecting
optimal runtime.

2. Is it small enough? Yes. CGAL::Polyhedron
3 can be tailored to store exactly the required

incidences and other required data, not more
and not less.

3. Is it flexible enough? Yes, certainly within
its design space of oriented 2-manifold meshes
with boundary that was sufficient for the range
of applications illustrated with our example
programs.

4. Is it easy enough to use? Yes. The full tuto-
rial with its example programs are exactly the
starting point for using CGAL::Polyhedron 3.
The example programs are short and easy to un-
derstand. There is certainly a learning curve for
mastering C++ to the level of using templates,
but it has to be emphasized that using templates
is far easier then developing templated code.

5. What is the license, can I use it? Yes, we hope
so. CGAL since release 3.0 and our tutorial pro-
grams have open source licenses. Other options
are available.

Subdivision Surfaces

A subdivision algorithm recursively applies refine-
ment and geometry smoothing on the control mesh
(Figure 5, 6), and approximates the limit surface of
the control mesh. Several refinement schemes in
practice are illustrated in Figure 3. The stencils of
the geometry smoothing are depending on the refine-
ment schemes, i.e. the reparameterizations. A stencil
defines a control submesh that is associated with nor-
malized weights of the nodes. Figure 4 demonstrates
the stencils of the PQQ scheme in Catmull-Clark
subdivision [CC78] and DQQ scheme in Doo-Sabin
subdivision [DS78]. We also demonstrate Loop
[Loo94],

√
3 [Kob00] and Quad-Triangle [SL03]

subdivisions in this tutorial. For further details about
subdivisions, readers should refer to [WW02] and
[ZS00].

PSfrag replacements

PQQ PTQ DQQ
√

3

Figure 3 – Examples of refinement schemes: primal
quadrilateral quadrisection (PQQ), primal triangle
quadrisection (PTQ), dual quadrilateral quadrisec-
tion (DQQ) and

√
3 triangulation. The control

meshes are shown in the first row.

Tutorial Outlines

Polyhedron Viewer

The tutorial starts with an implementation
of a basic polyhedron viewer based on the
CGAL::Polyhedron 3 with the default config-
uration. This basic viewer demonstrates basic
functionalities of a CGAL::Polyhedron 3. We
describe how to import a polyhedron file in the OFF
format based on the modifier callback mechanism
and the incremental builder. We also show the mesh
traversal based on the iterators and the circulators
for rendering and the OFF file exporting.

An extended polyhedron viewer is then introduced
by customizing the Polyhedron 3 with extra at-
tributes and functionalities. This enriched polyhe-
dron supports facet and vertex normals for render-
ing, supports the axis-aligned bounding box of the
polyhedron, and provides geometry items special-
ized with algorithmic flags. The superimposition of
the control mesh on the subdivision surfaces are im-
plemented with the flags of the halfedge items (Fig-
ure 6).

The tutorial also features a trackball to interac-
tively manipulate the polyhedron, a snapshot func-
tion of the camera viewpoint and the transformation
states, a raster output to the clipboard, and the vecto-
rial output to a postscript file.

Subdivision Algorithms

The second part of the tutorial focuses on the design
and the implementation of

√
3 subdivision (Figure 5)

and Quad-Triangle subdivision (Figure 6).
In addition to its importance in the surface

modeling, we choose subdivision algorithms to
demonstrate both the connectivity operation (refine-
ment) and the geometry operation (smoothing) of a
CGAL::Polyhedron 3. These two operations are
the primary implementation components required by
algorithms on polyhedron meshes. Readers intended
to design and implement mesh algorithms other than

PSfrag replacements

(a) (b) (c) (d)

Figure 4 – The stencil (top blue) and its vertex (bot-
tom red) in Catmull-Clark subdivision (a-c) and
Doo-Sabin subdivision (d). Catmull-Clark subdivi-
sion has three stencils: facet-stencil (a), edge-stencil
(b) and vertex-stencil (c). Doo-Sabin subdivision has
only corner-stencil (d). The stencil weights are not
shown.

subdivisions will also be benefited from the tech-
niques we proposed here.

The key to implement a subdivision algorithm is
to efficiently support the refinement, i.e. the connec-
tivity modifications. Two approaches are introduced
to support the refinement: the Euler operators (op-
erator scheme) and the modifier callback mechanism
(modifier scheme). The operator scheme reconfig-
ures the connectivity with a combination of Euler op-
erators.

√
3 subdivision [Kob00] is used to demon-

strate this scheme. We also compare our implemen-
tation with the

√
3 subdivision provided in Open-

Mesh library.
Though simple and efficient in some refinements,

e.g.
√

3 subdivision, the correct combination of
the operators is hard to find for some refinements,
e.g. Doo-Sabin subdivision [DS78]. The modifier
scheme solves the problem by letting the program-
mers create their own combinatorial operators using
the polyhedron incremental builder. Quad-Triangle
subdivision [SL03, Lev03] is used to demonstrate
this scheme.

Combinatorial Subdivision Library

The Combinatorial Subdivision Library (CSL) is de-
signed based on the policy-based design [Ale01].
The policy-based design assembles a class (called
host) with complex behavior out of many small be-
haviors (called policies). Each policy defines an
interface for a specific behavior. CSL proposes a
generic subdivision solution as a refinement function
parameterized with the geometry smoothing rules.
Subdivisions in CSL are build as proper combina-
tions of the refinement functions and the geometry
policy classes. The refinement function refines the
control mesh, maintains the correspondence between
the control mesh and refined mesh, and applies the
smoothing stencils provided by the policy class.
For example, Catmull-Clark subdivision [CC78] is
structured as a quadralization function parameter-

Figure 5 –
√

3 subdivision of the mannequin mesh.

ized with the Catmull-Clark smoothing rules.
void C a t m u l l C l a r k s u b d i v i s i o n (P o l y h e d r o n & p) {

q u a d r a l i z e p o l y h e d r o n
<C a t m u l l C l a r k r u l e <Polyhedron >>(p) ;

}
c l a s s C a t m u l l C l a r k r u l e {
p u b l i c :

void f a c e t r u l e (F a c e t h a n d l e f a c e t , P o i n t & p t) ;
void e d g e r u l e (H a l f e d g e h a n d l e edge , P o i n t & p t) ;
void v e r t e x r u l e (V e r t e x h a n d l e v e r t e x , P o i n t & p t) ;

} ;

The quadralize polyhedron<>() is the host
function refining the input mesh and the Cat-

mullClark rule is the policy class applying the
Catmull-Clark stencils. The refinement functions
are implemented based on the Euler operations or
the modifier callback mechanism. The refinement
functions also maintain the correspondence with the
stencil, i.e., the submesh centered around the given
facet, edge, or vertex, and the smoothing point. The
smoothing point is calculated by calling the policies,
e.g., the facet rule(), the edge rule(), and the
vertex rule() respectively. Inside a policy, ap-
plying the stencil is simplified to the mesh traversal
of a 1-ring neighborhood which can be done with the
circulators. Following example illustrates the policy
of the facet-stencil in Catmull-Clark subdivision.
void f a c e t r u l e (F a c e t h a n d l e f a c e t , P o i n t & p o i n t) {

H a l f e d g e a r o u n d f a c e t c i r c u l a t o r h c i r
= f a c e t−>f a c e t b e g i n () ;

V e c t o r vec = h c i r−>v e r t e x ()−> p o i n t () − ORIGIN ;
++ h c i r ;
do {

vec = vec + h c i r−>v e r t e x ()−> p o i n t () ;
} whi le (+ + h c i r ! = f a c e t−>f a c e t b e g i n ()) ;
p o i n t = ORIGIN + vec / c i r c u l a t o r s i z e (h c i r) ;

}

This policy-based approach offers a convenient
way to specialize a subdivision with the template
smoothing rules. CSL currently supports Catmull-
Clark, Loop, Doo-Sabin,

√
3 and Quad-Triangle

subdivisions. Though demonstrated with a specific
enriched Polyhedron 3 in our polyhedron viewer,
CSL accepts any polyhedron mesh specialized from
the Polyhedron 3 with the Point type defined in

Figure 6 – Quad-Triangle subdivision of the rhom-
bicuboctahedron mesh.

the vertex.

References
[Ale01] Andrei Alexandrescu. Modern C++ Design:

Generic Programming and Design Patterns Applied.
Addison-Wesley, 2001.

[Aus99] Matthew H. Austern. Generic programming and the
STL: using and extending the C++ Standard Tem-
plate Library. Addison-Wessley, 1999.

[CC78] E. Catmull and J. Clark. Recursively generated
B-spline surfaces on arbitrary topological meshes.
Computer-Aided Design, 10:350–355, September
1978.

[DS78] D. Doo and M. Sabin. Behaviour of recursive divi-
sion surfaces near extraordinary points. Computer-
Aided Design, 10:356–360, September 1978.

[FGK+00] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and
S. Schönherr. On the Design of CGAL, a Computa-
tional Geometry Algorithms Library. Softw. – Pract.
Exp., 30(11):1167–1202, 2000.

[Ket99] L. Kettner. Using generic programming for design-
ing a data structure for polyhedral surfaces. Comput.
Geom. Theory Appl., 13:65–90, 1999.

[Kob00] L. Kobbelt.
√

3-Subdivision. In Proceedings of SIG-
GRAPH, pages 103–112, 2000.

[Lev03] A. Levin. Polynomial generation and quasi-
interpolation in stationary non-uniform subdivision.
Compu. Aided Geom. Des., 20(1):41–60, 2003.

[Loo94] C. Loop. Smooth spline surfaces over irregular
meshes. In Proceedings of SIGGRAPH, pages 303–
310, 1994.

[SL03] J. Stam and C. Loop. Quad/triangle subdivision.
Computer Graphics Forum, 22(1):79–85, March
2003.

[WW02] J. Warren and H. Weimer. Subdivision Methods for
Geometric Design. Morgan Kaufmann, 2002.

[ZS00] D. Zorin and P. Schröder, editors. Subdivision for
Modeling and Animation, Course Notes. ACM SIG-
GRAPH, 2000.

